Abstract
BackgroundQuinoline 2-oxidoreductase (Qor) is a member of molybdenum hydroxylase which catalyzes the oxidation of quinoline (2, 3 benzopyridine) to 1-hydro-2-oxoquinoline. Qor has biological and medicinal significances. Qor is known to metabolize drugs produced from quinoline for the treatment of malaria, arthritis, and lupus for many years. However, the mechanistic action by which Qor oxidizes quinoline has not been investigated either experimentally or theoretically.Purpose of the studyThe present study was intended to determine the interaction site of quinoline, predict the transition state structure, and probe a plausible mechanistic route for the oxidative hydroxylation of quinoline in the reductive half-reaction active site of Qor.ResultsDensity functional theory calculations have been carried out in order to understand the events taking place during the oxidative hydroxylation of quinoline in the reductive half-reaction active site of Qor. The most electropositivity and the lowest percentage contribution to the HOMO are shown at C2 of quinoline compared to the other carbon atoms. The transition state structure of quinoline bound to the active site has been confirmed by one imaginary negative frequency of −104.500/s and −1.2365899E+06 transition state energies. The Muliken atomic charges, the bond distances, and the bond order profiles were determined to characterize the transition state structure and the reaction mechanism.ConclusionThe results have shown that C2 is the preferred locus of interaction of quinoline to interact with the active site of Qor. The transition state structure of quinoline bound to the active site has been confirmed by one imaginary negative frequency. Moreover, the presence of partial negative charges on hydrogen at the transitions state suggested hydride transfer. Similarly, results obtained from total energy, iconicity and molecular orbital analyses supported a concerted reaction mechanism.
Highlights
Quinoline 2-oxidoreductase (Qor) is a member of molybdenum hydroxylase which catalyzes the oxidation of quinoline (2, 3 benzopyridine) to 1-hydro-2-oxoquinoline
The most electropositivity and the lowest percentage contribution to the highest occupied molecular orbital (HOMO) are shown at C2 of quinoline compared to the other carbon atoms
The transition state structure of quinoline bound to the active site has been confirmed by one imaginary negative frequency of −104.500/s and −1.2365899E+06 transition state energies
Summary
Quinoline 2-oxidoreductase (Qor) is a member of molybdenum hydroxylase which catalyzes the oxidation of quinoline (2, 3 benzopyridine) to 1-hydro-2-oxoquinoline. Purpose of the study: The present study was intended to determine the interaction site of quinoline, predict the transition state structure, and probe a plausible mechanistic route for the oxidative hydroxylation of quinoline in the reductive half-reaction active site of Qor. Quinoline 2-oxidoreductase is a member of molybdenum hydroxylases with a known three dimensional structure [1]. Quinoline 2-oxidoreductase is a member of molybdenum hydroxylases with a known three dimensional structure [1] It catalyzes the oxidative hydroxylation of quinoline (2, 3 benzopyridine) to 1-hydro-2-oxoquinoline. The molybdenum cofactor is the reductive half-reaction active site of Qor [5] It is composed of a Mo(+VI) ion and a molybdopterin cytosine dinucleotide [5]. It is labile in nature and highly sensitive to air oxidation as a result the chemical syntheses of either Moco or its intermediates have never been successful so far [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.