Abstract

Purpose, methods and research methodology. The aim of the work is to calculate and compare the trends of transformation of organic matter of I-A and III-A type kerogen, which is in contact with organic and inorganic gases in the process of immersion of organ-containing rocks. The calculations were performed for I and III type kerogen and a mixture of organic and inorganic gases within depths of 1-20 km and heat flows from 40 to 100 mW / m2. Results, scientific novelty and practical significance of research. A comparison and analysis of changes in the total entropy of the system was performed for I and III type kerogen, which showed the complex nature of the total entropy functional dependence on depth. It was revealed that the entropy has two reversible sections, the maxima of which are at a depth of 6 and 12 km. The analysis of changes in the Gibbs energy during the immersion of the geochemical system unambiguously indicates the presence of a stability zone for the hydrocarbon component. The maximum of this zone corresponds to the minimum value of the Gibbs energy, depends on the kerogen type and heat flow, is in the range of 4-7 km and indicates the area of stability, or "oil window". The complex nature of the balance between constitutional water and kerogen, depending on the heat flow and depth, has been established. To analyze this equilibrium, a simple dehydration equilibrium constant (Kd) was proposed, which generalizes the transformations of water in the kerogen matrix. Thermodynamic methods were used to calculate and compare the gas-generating capacity of I and III type kerogen for all heat flows, which showed that I type kerogen is the most productive with gas-generating potential, and III type is the least productive. To estimate the proportional composition of hydrocarbon gases in equilibrium with kerogen, the fat content coefficient of the gas generated by I and III type kerogen was calculated. It is shown that with immersion, the fat content coefficient first increases rapidly, which indicates an increase in the proportional content of alkanes heavier than methane. This growth reaches a maximum within 2-3 km for all considered heat flows, after which the fat content coefficient decreases. The equilibrium constant of the Kolbe-Schmitt reaction is calculated, which showed that regardless of the heat flow, the rate of kerosene decarboxylation decreases with increasing depth due to the shift of equilibrium to the left, and the contribution of this reaction to kerogen conversion is insignificant.

Highlights

  • Вихідними даними для розрахунків є елементний склад керогену І та ІІІ типу, а також температура і тиск, за яких відбувається його трансформація

  • The calculations were performed for I and III type kerogen and a mixture of organic and inorganic gases within depths of 1-20 km and heat flows from 40 to 100 mW / m2

Read more

Summary

Introduction

Основою розрахунків трендів трансформації керогену І та ІІІ типів був алгоритм, розроблений на базі апарату формалізму Джейнса, застосування якого дозволило встановити найменш суперечливий розподіл атомарних груп та компонентів довільної системи у стані термодинамічної рівноваги для обраних термобаричних умов [19]. Вихідними даними для розрахунків є елементний склад керогену І та ІІІ типу, а також температура і тиск, за яких відбувається його трансформація. 3 показана зміна енергії Гіббса системи кероген І типу / індивідуальні компоненти для теплових потоків в межах глибин 1-20 км.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call