Abstract

Controlling the electron dynamics during laser-matter interactions is a key factor to control the energy deposition and subsequent material modifications induced by femtosecond laser pulses. One way to achieve this goal is to use two-color femtosecond laser pulses. In this paper, the electron dynamics in dielectric materials induced by two-color femtosecond laser pulses is studied by solving dedicated optical Bloch equations. This model includes photo- and impact ionization, the laser heating of conduction electrons, their recombination to the valence band, and their collisions with phonons. The influence of photon energies, laser intensities, and pulse-to-pulse delay is analyzed. Depending on the interaction process, colors cooperate to excite electrons or drive them independently. For the given laser parameters, an optimal pulse-to-pulse delay is found which enhances significantly the energy deposition into the material, in agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call