Abstract

A three-dimensional mathematical model has been developed to compute the thermomechanical state in the mold of thin-slab continuous casters. The thin-slab mold differs from those used in conventional slab casters in that the upper portion of the broad side walls defines a funnel-shaped chamber which allows the nozzle to be submerged into the liquid metal. The chamber converges with distance down the mold, reducing to the rectangular cross section of the finished casting near the mold exit. The new mold, along with casting speeds up to 6 m/min, allows slabs to be cast 50–60 mm thick, compared with 150 to 350 mm in conventional continuous slab casting. However, the mold shape and high casting speed lead to higher mold temperatures and shorter mold life than are found in conventional slab casters. In this article, we develop mathematical models of the process to determine the role of various process parameters in determining the mold life. Finite-element analysis is used to determine the temperatures in the mold and cast slab, and these data are then used in an elastic-viscoplastic analysis to investigate the deformation of the mold wall in service. Cyclic inelastic strains up to 1.75 Pct are found in a region below the meniscus along the funnel edge. These large strains result from the combination of locally high temperatures coupled with geometric restraint of the mold. The deformation leads to short mold life because of thermal fatigue cracking of the mold. The computed locations and time to failure of the mold in fatigue agree very well with observations of the appearance of mold surface cracks in an operating caster. The models are also used to develop an improved mold design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.