Abstract
For the accurate modeling and simulation of the flame spray pyrolysis (FSP) process, all the essential phenomena need to be taken into account. A validated model could then be used for process optimization and design with reasonably reduced costs. In that sense, this work uses a combination of computational fluid dynamics (CFD) and a population balance model (PBM) to investigate the influence of thermophoresis and other parameters (related to sintering and turbulent particle diffusion) in the final produced particle size. This work simulates the flame spray using CFD under an Eulerian–Lagrangian framework. Furthermore, a monodisperse solver for a bivariate PBM is implemented into ANSYS Fluent to simulate the formation and evolution of nanoparticles inside the reactor. We investigate the production of zirconium dioxide (ZrO2) nanoparticles and use experimental data from the literature for model validation. The model produces accurate results for some of the investigated cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.