Abstract

AbstractWe have investigated the impact of surface reactions such as NH3 decomposition and radical adsorption on quartz flow reactor data for Thermal DeNOx using a model that accounts for surface chemistry as well as molecular transport. Our calculations support experimental observations that surface effects are not important for experiments carried out in low surface to volume quartz reactors. The reaction mechanism for Thermal DeNOx has been revised in order to reflect recent experimental results. Among the important changes are a smaller chain branching ratio for the NH2 + NO reaction and a shorter NNH lifetime than previously used in modeling. The revised mechanism has been tested against a range of experimental flow reactor data for Thermal DeNOx with reasonable results. The formation of N2O in Thermal DeNOx has been modelled and calculations show good agreement with experimental data. The important reactions in formation and destruction of N2O have been identified. Our calculations indicate that N2O is formed primarily from the reaction between NH and NO, even though the NH2 + NO2 reaction possibly contributes at lower temperatures. At higher temperatures N2O concentrations are limited by thermal dissociation of N2O and by reaction with radicals, primarily OH. © 1994 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.