Abstract

The objective of this study is to find out which mathematical model best explains the temporal fluctuations of the axial blood flow velocity waveforms in the basal arteries of the brain. Blood flow velocity time series were sampled by transcranial Doppler (TCD) examination of the middle cerebral arteries in 10 healthy volunteers. A recently developed mathematical test (surrogate data analysis) was used to examine whether the spectral Doppler maximum waveform is consistent with some; prespecified model (null hypothesis). We tested four different null hypotheses. 1. Uncorrelated white noise. 2. Linearly filtered noise. 3. Linearly filtered noise with a static nonlinear amplitude transformation. 4. Noisy nonlinear limit cycle. All null hypotheses except the last one could be rejected. We conclude that the TCo waveforms are best described as a nonlinear limit cycle with some percentage of noisel either dynamical and/or observationall which is uncorrelated from one single oscillation to the next. These results are a strong argument to perform nonlinear analysis in future TCD studies in order to obtain a better understanding of the cerebral hemodynamics. [Neural Res 1998; 20: 381–390]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.