Abstract
This paper elaborates on a computational model for speech recognition that is inspired by several interrelated strands of research in phonology, acoustic phonetics, speech perception, and neuroscience. The goals are twofold: (i) to explore frameworks for recognition that may provide a viable alternative to the current hidden Markov model (HMM) based speech recognition systems and (ii) to provide a computational platform that will facilitate engaging, quantifying, and testing various theories in the scientific traditions in phonetics, psychology, and neuroscience. This motivation leads to an approach that constructs a hierarchically structured point process representation based on distinctive feature landmark detectors and probabilistically integrates the firing patterns of these detectors to decode a phonological sequence. The accuracy of a broad class recognizer based on this framework is competitive with equivalent HMM-based systems. Various avenues for future development of the presented methodology are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.