Abstract
Hydrogen temperature-programmed reduction (H2-TPR) has become a very useful and common technique for the chemical characterization of solids as it is sensitive to the study of reducible species in catalysis and is considered to be a fingerprint for the reducibility of metal oxide catalysts. However, although modeling of H2-TPR patterns has been extensively studied, little attention has been paid to the effect of particle-size distribution (PSD). The complexity of modeling H2-TPR patterns arises from the fact that the chemistry of metal oxide reduction depends on several factors, including particle size, nature of the support material and confinement within the porous structure, amongst others. In order to identify the kinetic reaction model governing the reduction of certain metal oxides and to explore the effect of PSD, pure metal oxides that only exhibited the particle size difference effect were used to model the H2-TPR patterns. Kinetic and thermodynamic data, which are very useful for characterizing heterogeneous catalysts, were obtained from this study. This work presents a simple procedure for modeling H2-TPR patterns of various metal oxides (i.e., CuO, Ag2O, and NiO) used as active phases in several reactions of environmental and energetic interest using several solid-state reaction kinetic models and considering their PSDs. The results obtained show that modeling the H2-TPR profiles provides information regarding the PSD of metal oxide catalysts that undergo a single-step reduction and only present the particle size difference effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.