Abstract
Measurements show that the polar mesospheric clouds (PMC) can vary, in the zonal mean, with periods around 1 month [Bailey et al., 2005. Observations of polar mesospheric clouds by the Student Nitric Oxide Explorer. J. Geophys. Res. 110, D13203, doi:10.1029/2004JD005422]. This observation has been the impetus for the present paper, where we describe corresponding temperature oscillations generated by the Numerical Spectral Model (NSM). Our numerical results are taken from the 3D and 2D versions of the NSM, which produce inter-annual and long-term variations in the polar mesopause region, as discussed in the accompanying paper (Part I). In the NSM, the intra-seasonal temperature variations with periods around 2 months are generated by the meridional winds that in turn are accelerated by the momentum deposition from small-scale gravity waves (GW) propagating north/south. The wave-driven dynamical process underlying the oscillations is intrinsically non-linear like that generating the quasi-biennial oscillation (QBO). Our analysis demonstrates that the seasonal annual and semi-annual variations excite the oscillation frequencies through non-linear cascading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.