Abstract
Intrinsically disordered proteins play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure–function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and force fields. Nevertheless, differences in fine details emerge from varying combinations of force-fields and sampling methods. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which are common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field and sampling method combinations for accurate structural and thermodynamic information in the study of disordered proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.