Abstract

We develop morphologically realistic models for amorphous carbon using quenched molecular dynamics. We show that as the thermal quench rate is decreased, the model structures become more highly ordered, forming large graphene-like fragments and regularly shaped porous features. The evolution of these changes is compared with a series of carbide-derived carbons synthesized from crystalline TiC using different chlorination temperatures. In general, we find that the structural changes in the models are similar to those seen in experiment and that these changes have a significant impact on pore size distributions, specific surface areas, and adsorption isotherms, which are used to empirically characterize microporous carbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.