Abstract

Abstract We measure the 10 and 18 μm silicate features in a sample of 67 local (z < 0.1) type 1 active galactic nuclei (AGN) with available Spitzer spectra dominated by nonstellar processes. We find that the 10 μm silicate feature peaks at with a strength (Si p = ln f p (spectrum)/f p (continuum)) of , while the 18 μm one peaks at with a strength of . We select from this sample sources with the strongest 10 μm silicate strength ( , 10 objects). We carry out a detailed modeling of the infrared spectrometer/Spitzer spectra by comparing several models that assume different geometries and dust composition: a smooth torus model, two clumpy torus models, a two-phase medium torus model, and a disk+outflow clumpy model. We find that the silicate features are well modeled by the clumpy model of Nenkova et al., and among all models, those including outflows and complex dust composition are the best. We note that even in AGN-dominated galaxies, it is usually necessary to add stellar contributions to reproduce the emission at the shortest wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.