Abstract

In the paper we develop a computational model of plastic deformation of an aluminum matrix composite. The composite is produced by sintering, and it has a cellular microstructure. SiC reinforcement particles form a stratum along the pellet boundaries of the V95 (analogous to 7075) aluminum alloy. The effective properties of the plastic flow of the stratum material are obtained by the rule of mixtures, depending on the volume fractions of the aluminum alloy and the reinforcement particles in the composite material. The feasibility of the model is demonstrated on the example of numerical simulation of the micro- and macroscopic stress-strain state of the composite under uniaxial tensile and compressive loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.