Abstract

ABSTRACTMagnesium alloys have been receiving much attention recently as potential lightweight alternatives to steel for automotive and other applications, but the poor formability of these alloys at low temperatures has limited their widespread adoption for automotive applications. Recent work with face centered cubic (FCC) materials has shown that introduction of twins at the nanometer scale in ultra-fine grained FCC polycrystals can provide significant increase in strength with a simultaneous improvement in ductility. This objective of this work is to explore the feasibility of extending this concept to hexagonal close packed (HCP) materials, with particular focus on using this approach to increase both strength and ductility of magnesium alloys. A crystal plasticity based finite element (CPFE) model is used to study the effect of varying the crystallographic texture and the spacing between the nanoscale twins on the strength and ductility of HCP polycrystals. Deformation of the material is assumed to occur by crystallographic slip, and in addition to the basal and prismatic slip systems, slip is also assumed to occur on the {1 0 $\bar 1$ 1} planes that are associated with compression twins in these materials. The slip system strength of the pyramidal systems containing the nanotwins is assumed to be much lower than the strength of the other systems, which is assumed to scale with the spacing between the nanotwins. The CPFE model is used to compute the stress-strain response for different microstrucrutral parameters, and a criterion based on a critical slip system shear strain and a critical hydrostatic stress is used to compute the limiting strength and ductility, with the ultimate goal of identifying the texture and nanotwin spacing that can lead to the optimum values for these parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.