Abstract

The air pollution index (API) is a common tool, which is often used for determining the quality of air in the environment. In this study, a discrete-time Markov chain model is applied for describing the stochastic behaviour of API data. The study reported in this paper is conducted based on the data collected from Klang city in Malaysia for a period of 3 years (2012–2014). Based on the API data, we considered a five-state Markov chain for depicting the five different states of the air pollution. We identified the Markov chain is an ergodic Markov chain and determined the limiting distribution for each state of the air pollution. In addition, we have identified the mean first passage time from one state to another. Based on the limiting distribution and the mean return time, we found that the risk of occurrences for unhealthy events is small. However, the risk remains notably troubling. Therefore, the standard of air quality in Klang falls within a margin that is considered healthy for human beings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.