Abstract

This paper develops and demonstrates a model representing radial defect transport through proton-conducting ceramic membranes, such as might be used in shell-and-tube type membrane reactors. The model uses a Nernst–Planck–Poisson (NPP) formulation and is designed to represent both steady-state and transient responses within mixed-conducting membranes with multiple charge-carrying defects. The partial differential equations, representing defect and charge conservation, are solved computationally using the method-of-lines in a differential-algebraic setting. Several example problems are solved and discussed, illustrating important aspects of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.