Abstract
The aim of this work is to understand the spatial spread of Chagas disease, which is primarily transmitted by triatomines. We propose a mathematical model using a system of partial differential reaction-diffusion equations to study and describe the spread of this disease in the human population. We consider the respective subclasses of infected and uninfected individuals within the human and triatomine populations. The dynamics of the infected human subpopulation considers two disease phases: acute and chronic. The human population is considered to be homogeneously distributed across a space to describe the local propagation of Chagas disease by triatomines during a short epidemic period. We determine the basic reproduction number that allows us to assess Chagas disease control measures, and we determine the speed of disease propagation by using traveling wave solutions for our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.