Abstract

An important action-planning problem is considered for participants of the pursuit–evasion game with multiple pursuers and a high-speed evader. The objects of study are mobile robotic systems and specifically small unmanned aerial vehicles (UAVs). The problem is complicated by the presence of significant wind loads that affect the trajectory and motion strategies of the players. It is assumed that UAVs have limited computing resources, which involves the use of computationally fast and real-time heuristic approaches. A novel and rapidly developing intelligent–geometric theory is applied to address the discussed problem. To accurately calculate the points of the participant’s rapprochement, we use a geometric approach based on the construction of circles or spheres of Apollonius. Intelligent control methods are applied to synthesize complex motion strategies of participants. A method for quickly predicting the evader’s trajectory is proposed based on a two-layer neural network containing a new activation function of the “s-parabola” type. We consider a special backpropagation training scheme for the model under study. A simulation scheme has been developed and tested, which includes mathematical models of dynamic objects and wind loads. The conducted simulations on pursuit–evasion games in close to real conditions showed the prospects and expediency of the presented approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call