Abstract

AbstractThe semi‐empirical electrotopological index, ISET, used for quantitative structure–retention relationship (QSRR) models firstly developed for alkanes and alkenes, was remodeled for organic functions such as ketones and aldehydes. The ISET values for hydrocarbons are calculated through the atomic charge values obtained from a Mulliken population analysis using the semi‐empirical AM1 method and their correlation with the SETi values attributed to the different types of carbon atoms according to experimental data. For ketones and aldehydes the interactions between the molecules and the stationary phase are slowly increased relative to the hydrocarbons, due to the charge redistribution that occurs in the presence of heteroatoms. For these polar molecules the increase in the interactions was included in the calculation of the ISET values through the dipole moment of the whole molecule and also through an equivalent local dipole moment related to the net charges of the atoms of the CO and HCO functional groups. Our findings show that the best definition of an equivalent local dipole moment is clearly dependent on the specific features of the charge distribution in the polar region of the molecules (e.g. ketones and aldehydes), which allows them to be distinguished. Thus, the QSRR models for 15 aldehydes and 42 ketones obtained using the remodeled ISET were of good quality as shown by the statistical parameters. The ability of this remodeled index to include charge distribution and structural details opens a new way to study the correlations between the molecular structure and retention indices in gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.