Abstract

During tunnel construction, crossing water-rich fault fracture zones leads to water influx hazards at the tunnel face. Excavation exposes the fault, causing disturbances and changes in the hydraulic gradient. Thus, the tunnel face becomes a low hydraulic head surface. The naturally high permeability of the fracture zone provides a pathway for groundwater flow, resulting in water seepage along the fracture zone and subsequent water influx at the tunnel face. To investigate this interaction, a two-phase double-point material point method was employed aimed at developing a coupled fluid-solid numerical model for excavating submarine fault tunnels. The model incorporates solid-liquid phase interaction, including rock mass permeability, water viscosity, and tunnel geometry. It analyzes the changes in the liquid-phase flow velocity, pore water pressure, and particle trajectories in the fractured zone ahead of the working face after the fracture zone is exposed, revealing the dynamic evolution of water influx following excavation. Additionally, this study discusses the impact of the solid-liquid phase permeability coefficients on the range of water influx hazards. The research findings demonstrate that the two-phase double-point material point method effectively captures the seepage and water influx processes, offering valuable insights into the mechanisms of sudden water influx in tunnel engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call