Abstract

The migration of U(VI) through the engineered barrier system (EBS) and into the natural environment in a geological repository for high-level radioactive waste depends on the chemical and physical environment of the repository. Modeling is widely used to understand the risk associated with migration of U(VI) for different barrier designs for repository sites. In this study, coupled thermal, hydrological, and chemical (THC) models were used to evaluate the risk of U(VI) migration at a proposed deep geological repository in northwestern China. The models incorporated two-site protolysis nonelectrostatic surface complexation, dissolution/precipitation of minerals and cation exchange as the major reactions controlling U(VI) migration. Modeling results showed that the main factors influencing U(VI) migration were pH, and the smectite content in the bentonite, as dissolution of the hydrous uranium oxide mineral schoepite is suppressed at higher pH values, and smectite is the most important adsorbent of dissolved U(VI). Therefore, an alkaline bentonite with a smectite volume fraction of >0.6 is suggested as the backfill material for this EBS. The THC model results also showed that in 100,000 years, U(VI) migration is constrained within EBS if the suggested bentonite is used as backfill in a repository that is hosted within Beishan granite. This study provides a feasible method for selecting a bentonite backfill and predicting the effect of environmental conditions on U(VI) migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.