Abstract

The viscoelastic solid model proposed in this work can predict the rheological responses of gelatin gels for finite deformations. This rheological model considers a degree of physical cross-links at a given maturation time, which is partially attained from those links totally available when a pure elastic network is achieved. Thus, both an elastic network formed by permanent links on the average and a viscoelastic network composed of the remaining adaptive links are described at each maturation time. This model for gelatin gels considers appropriately the interplay between the networks involving: (a) viscoelastic relaxation as a consequence of an imposed mechanical history, (b) average degree of physical cross-links in the partially generated permanent network acting in the short-term mechanical response. In this context of analysis the standard viscoelastic solid is obtained asymptotically for small deformations. Also the effect of shear rate on the shear test is studied and the braking phenomenon is analysed in relation to the formation of microstructure by considering viscoelastic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.