Abstract

The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu(2+) (l-phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu(2+) (l-phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed-phase column with an optimized mobile phase composed of 6 mmol/L of l-phenylalanine or N,N-dimethyl-l-phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call