Abstract
Owing to the pervasive interdependency among networks and the great threat of various disasters, one of the most challenging issues is the resilience evaluation of interdependent networks. Existing studies have been conducted to analyze interdependent network resilience addressing unidirectional dependency, which triggers and propagates network failures. The loss and recovery of network functionality are complicated and important under such interdependency. Ignoring the interdependency nature of different networks would lead to incomplete or incorrect results in their resilience assessment. This paper developed a resilience assessment model for interdependent transit networks under failures. Taking the interdependency relations, network topology, flow characteristics, and demand distribution into account, the proposed methodology explicitly quantifies the impacts of varying network interdependency on the resilience of interdependent networks. The approach was applied to the interdependent metro and bus networks of Xi’an, China. Results show the resilience of interdependent networks is greatly affected by node degree heterogeneity in topology. The higher the heterogeneity of interdependent nodes, the larger the network resilience becomes. The bidirectional function dependency among networks demonstrates dominant effects on the resilience of interdependent networks if one network is disrupted. If interdependent networks have homogeneous function, the resilience of the networks would be significantly improved with the increase in interdependency. The degree of flow matching between both networks plays a particularly important role in network resilience enhancement. Findings of this study would provide practical implications for the design and planning of interdependent infrastructure systems under disasters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part A: Policy and Practice
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.