Abstract
Urban heat reduction by evaporative cooling from extensive green roofs is explored by applying irrigation scenarios to green roofs located in different climate zones using a coupled atmosphere-vegetation-substrate green roof model. The model, which is integrated in the building energy simulation software EnergyPlus, is validated with eddy covariance surface energy fluxes from a green roof in Berlin, Germany. The original model was modified to include interception and an improved runoff calculation. Three irrigation scenarios were defined (no irrigation, sustainable irrigation by harvested runoff water, unrestricted irrigation) to study the heat reduction potential in terms of surface energy partitioning and sensible heat fluxes (QH). The irrigation scenarios are compared to two white roofs (albedo equal to 0.35 and 0.65) and a black roof.High correlation of sensible and latent heat (QE) fluxes between measured and modelled data for the original and the modified version of the green roof model were observed (for the original model, R2 = 0.91 and 0.81 for QH and QE, respectively, while for the modified version R2 = 0.91 and 0.80, respectively). The modified version was applied to study irrigation, due to lower systematic errors for QH, QE and better performance for the substrate moisture content. In comparison to a black roof the green roof reduces urban excess heat by 15%–51% with sustainable irrigation, by 48%–75% with unrestricted irrigation, but drops to 3% for unirrigated roofs in the different cities. Sustainable irrigation can be effective in climates with high annual (or summerly) precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.