Abstract

In this paper an original numerical model, based on the standard Berg model, is used to simulate the growth mechanism of Ti-doped VOx deposited with changing oxygen flow during reactive sputtering deposition. Ti-doped VOx thin films are deposited using a V target with Ti inserts. The effects of titanium inserts on the discharge voltage, deposition rate, and the ratio of V/Ti are investigated. By doping titanium in the vanadium target, the average sputtering yield decreases. In this case, the sputter erosion reduces, which is accompanied by a reduction in the deposition rate. The ratio between V content and Ti content in the film is measured using energy-dispersive x-ray spectroscopy (EDX). A decrease in the vanadium concentration with the increasing of the oxygen flow rate is detected using EDX. Results show a reasonable agreement between numerical and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.