Abstract

In this article, field pilot study was undertaken to examine the transport mechanism for total petroleum hydrocarbon remediation in varying concentration using pseudo first order, pseudo second order and intra particle diffusion kinetic models in land farming treatment. Soil samples were artificially contaminated in varying concentration of 1,000 mg/kg (low), 3,000 mg/kg (medium) and 5,000 mg/kg (high) and treated using organic and inorganic fertilizers for a period of 150days which is the duration for effective remediation treatment. The results from the treated samples were subjected to kinetics studies while coefficient of determination (R2) was applied on the residual total petroleum hydrocarbon (TPH) after 150 days of treatment, pseudo first order had R2 values of 0.7898 (low), 0.6776 (medium) and 0.6131 (high). Pseudo second order had R2 values of 0.9737 (low), 0.9467 (medium), 0.7863 (high) while intra particle diffusion had R2 values of 0.9940 (low), 0.9821 (medium) and 0.9489 (high) respectively. The results indicate that intra particle diffusion model best described the kinetics mechanism of TPH remediation using land farming treatment; but when the alteration in the error structure associated with transforming a nonlinear kinetic equation into linear equation is minimized using nonlinear regression optimization procedure, pseudo first order emerged as the best kinetic model having the least sum of errors as 0.000270 (low), 0.000185 (medium) and 0.000278 (high).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.