Abstract
We present a numerical study of propagation of VLF whistler-mode waves in a laboratory plasma. Our goal is to understand whistler propagation in magnetic field-aligned irregularities (also called channels or ducts). Two cases are examined, that of a high-frequency (ω>Ωce/2) whistler in a density depletion duct and that of a low-frequency (ω<Ωce/2) whistler in a density enhancement. Results from a numerical simulation of whistler wave propagation are compared to data from the UCLA Los Angeles Physics Teachers Alliance Group plasma device and whistler propagation in pre-existing density depletion and density enhancement ducts is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.