Abstract
An important task in nondestructive materials evaluation is the development of techniques to characterize the bond quality of adherent joints. Binding forces are nonlinear and cause a nonlinear modulation of transmitted and reflected ultrasonic waves. As a consequence, the higher harmonics generated by an insonified monochromatic wave give information about the adhesive bonds. The local binding forces in thin bonded interfaces can be obtained by the amplitudes of the ultrasonic waves of the insonified frequency and its higher harmonics as transmitted through the interface. Additional phase measurements may enable one to obtain the evaluation of the full hysteretic cycle of the interaction force. In order to gain a deeper understanding of the interface region and to improve the technique, numerical simulations of the ultrasonic wave propagation through specimens of two bonded elements can be used. A simple model based on the local interaction simulation approach (LISA) is described in this contribution, and a comparison between the results of the simulations and the experimental data is presented. Besides its intrinsic relevance for NDE, the problem considered in this paper may be very useful to analyze and test models for the simulation of ultrasonic wave propagation in nonclassical nonlinear mesoscopic elastic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.