Abstract
We investigate the interpulse thermal interaction of a train of ultrashort laser pulses and develop a model to describe the isobaric heating of air by a train of pulses undergoing filamentation. We calculate the heating of air from a single laser pulse and the resulting refractive index perturbation encountered by subsequent pulses, and use this to simulate the propagation of a high-power pulse train. The simulations show deflection of laser filaments by the thermal refractive index consistent with previous experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.