Abstract
This article investigates the increase of traction-coupling properties of propellers, patency of machine-tractor units and decrease of soil compaction. For a propulsor equipped with anti-skid devices, the slippage process is formed due to factors of soil compression by the soil-tread and shear of the soil by tire hooks. With the decrease in the number of detachable hooks, the period when the first hook disengaged and the second has not yet entered in interaction with the ground, increases. At the moment, traction and coupling properties of the wheel are formed only due to the tire hooks. When the detachable hook engages with the soil, the traction capacity of the wheel is made up of the forces of shear of soil “bricks” sandwiched between tire hooks and the forces of soil deformation by detachable hooks. As a result of integrating the dependence of the shear stress and deformation of the soil, a formula was obtained to determine the tangential traction force of the tractor. If the skidding of the wheel assembly depends on the pulling force, then the drag force from the anti-skid device. Using the known dependencies of the slippage of wheeled propellers, dependences are obtained to determine the slippage of the propulsion unit with the anti-skid device. With the increase in the number of anti-skid devices on the wheel, slippage is reduced, however, according to the research, the time required for the assembly and disassembly of the device reduces the interchangeability of the wheel assembly. We calculated he number of anti-skid devices at which the maximum exchange capacity will be reached. The penetration depths at which the maximum efficiency of the wheel assembly running system will be reached are obtained and the results are tabulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.