Abstract

We have studied the photocurrent data of 20:80 wt% blends of poly(2-methoxy-5-(3’,7’-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells. Two cases have been investigated: When only drift of charge carriers is taken into account, a voltage-independent photocurrent is expected, corresponding to the extraction of all generated charges. It is demonstrated that the experimental data are in disagreement with this prediction. However, when both drift and diffusion of charges are taken into account, the predicted photocurrent shows a different behavior: At low electric fields a linear behavior is predicted, which results from the diffusion of charges, followed by saturation at high fields. The agreement between the numerical result and the experimental data obtained from MDMO-PPV:PCBM cells is satisfactory when a charge carrier generation rate of G=1.6 × 10 27 m -3 s -1 is used, showing the importance of diffusion at low fields, i.e., near the open-circuit voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call