Abstract

BackgroundA patient’s journey through the health care system is influenced by clinical and system processes across the continuum of care.MethodsTo inform optimized access to care and patient flow for individuals with traumatic spinal cord injury (tSCI), we developed a simulation model that can examine the full impact of therapeutic or systems interventions across the care continuum for patients with traumatic spinal cord injuries. The objective of this paper is to describe the detailed development of this simulation model for a major trauma and a rehabilitation centre in British Columbia (BC), Canada, as part of the Access to Care and Timing (ACT) project and is referred to as the BC ACT Model V1.0.FindingsTo demonstrate the utility of the simulation model in clinical and administrative decision-making we present three typical scenarios that illustrate how an investigator can track the indirect impact(s) of medical and administrative interventions, both upstream and downstream along the continuum of care. For example, the model was used to estimate the theoretical impact of a practice that reduced the incidence of pressure ulcers by 70%. This led to a decrease in acute and rehabilitation length of stay of 4 and 2 days, respectively and a decrease in bed utilization of 9% and 3% in acute and rehabilitation.ConclusionThe scenario analysis using the BC ACT Model V1.0 demonstrates the flexibility and value of the simulation model as a decision-making tool by providing estimates of the effects of different interventions and allowing them to be objectively compared. Future work will involve developing a generalizable national Canadian ACT Model to examine differences in care delivery and identify the ideal attributes of SCI care delivery.

Highlights

  • Spinal cord injury (SCI) can result in irreversible neurological impairment of the motor, sensory and/or autonomic nervous systems; and was estimated to affect 85,556 persons in Canada in 2010 [1]

  • The objective of this paper is to describe the detailed development of a simulation model of the continuum of Traumatic spinal cord injuries (tSCI) care for a major trauma and rehabilitation centre in Vancouver, British Columbia (BC), Canada, known as the BC ACT Model V1.0, which served as our pilot site for ACT

  • High-level process map was generated to describe the care settings, resource availability, and services provided at the acute care and rehabilitation facilities; a second, detailed process map was subsequently developed to describe decision points and criteria for decisions which may affect the flow of patients with tSCI through the continuum of care

Read more

Summary

Introduction

Spinal cord injury (SCI) can result in irreversible neurological impairment of the motor, sensory and/or autonomic nervous systems; and was estimated to affect 85,556 persons in Canada in 2010 [1]. Traumatic spinal cord injuries (tSCI) occur from external impacts such as motor vehicle collisions, sports accidents, falls, or violence and account for over half of the affected population, with an estimated prevalence of 43,974 or 1,298 per million in Canada in 2010 and approximately 1,785 new cases each year [1]. Care for patients with tSCI demands a number of resources such as hospital trauma care, rehabilitation and typically lifelong follow up. Advances in tSCI care have resulted in increased survival from the trauma and patients experiencing a close to normal life expectancy [6,7]. A patient’s journey through the health care system is influenced by clinical and system processes across the continuum of care

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call