Abstract

A novel computational method is developed in this study through the coupling of the discrete element method (DEM) and the scaled boundary finite element method (SBFEM). The objective of the developed technique is to model the particle breakage phenomenon in granular materials. This method models individual grains as single star-convex arbitrary sided polygons. The DEM is used to resolve the dynamics of each grain whereas the SBFEM is used to determine its corresponding stress state after a DEM analysis. The flexibility of both the SBFEM and DEM enable the grains to be formulated on arbitrary sided polygons so that the morphology of each grain to be replicated using only a single polygon. Grain breakage condition is determined if the stress state in a polygon satisfies a mechanically driven criterion e.g. the Hoek-Brown criterion is used. Once the breakage condition is detected, the resulting grain is split into two separate polygons. The resulting new polygons are directly modelled by the DEM and SBFEM without any change to the formulation. The feasibility of the developed method is demonstrated using a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.