Abstract

The best-sampled afterglow light curves are available for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component jet model and the refreshed shock model, although a sudden density-jump in the circumburst environment is also a potential choice. Here we re-examine the optical afterglow of GRB 030329 numerically in light of the three models. In the density-jump model, no obvious rebrightening can be produced at the jump moment. Additionally, after the density jump, the predicted flux density decreases rapidly to a level that is significantly below observations. A simple density-jump model thus can be excluded. In the two-component jet model, although the observed late afterglow (after 1.6 days) can potentially be explained as emission from the wide-component, the emergence of this emission actually is too slow and it does not manifest as a rebrightening as previously expected. The energy-injection model seems to be the most preferred choice. By engaging a sequence of energy-injection events, it provides an acceptable fit to the rebrightening at $\sim 1.6$ d, as well as the whole observed light curve that extends to $\sim 80$ d. Further studies on these multiple energy-injection processes may provide a valuable insight into the nature of the central engines of gamma-ray bursts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.