Abstract

Citizens in urban areas are affected by the urban heat island (UHI) effect, resulting in increased thermal heat compared to rural areas. This threat is exacerbated by global climate change. Therefore, it is necessary to assess human thermal comfort and risk for decision making. This is important for planners (climate resilience), the health sector (information for vulnerable people), tourism, urban designers (aesthetics), and building architects. Urban structures modify local meteorological parameters and thus human thermal comfort at the microscale. Knowledge of the pattern of a city’s UHI is typically limited. Based on previous research, generalized additive models (GAMs) were built to predict the spatial pattern of the UHI in the city of Karlsruhe. The models were trained with administrative, remotely sensed, and land use and land cover geodata, and validated with measurements in Freiburg. This identified the hot and cold spots and the need for further urban planning in the city. The model had some limitations regarding water bodies and anthropogenic heat production, but it was well suited for applications in mid-latitude cities which are not topographically characterized. The model can potentially be used for other cities (e.g., in heat health action plans) as the training data are freely available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call