Abstract

The derivation of radiometric specifications for imaging spectrometers from the visible to the short-wave infrared part of the spectrum is a task based on the requirements of potential scientific applications. A method for modeling the noise equivalent radiance at-sensor level is proposed. The model starts with surface reflectance signatures, transforms them to at-sensor signatures, and combines signatures of various applications with regard to performance requirements. The wavelength-dependent delta radiances are then derived at predefined radiance levels by use of a model of the sensor performance. The model is applied with regard to the upcoming Airborne Prism Experiment imaging spectrometer system. A combination of various potential application disciplines forms the basis of the experiment. The results help in the definition of radiometric levels for laboratory calibration of the noise equivalent radiance levels, the quantization of the signal, and the spectral range of an instrument to be designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.