Abstract
Strong light-matter interactions significantly modify the optical properties of molecules in the vicinity of plasmonic metal nanoparticles. Since the dimension of the plasmonic cavity approaches that of the molecules, it is critical to explicitly describe the nanoparticle junctions. In this work, we use the discrete interaction model/quantum mechanical (DIM/QM) method to model the coupling between the plasmonic near-field and molecular excited states. DIM/QM is a combined electrodynamics/quantum mechanical model that uses an atomistic description of the nanoparticle. We extend the DIM/QM method to include the local field effects in the sum-over-state formalism of time-dependent density functional theory. As a test of the method, we study the interactions between small organic chromophores and metal nanoparticles. In particular, we examine how the inclusion of multiple electronic transitions and intermolecular interactions modify the coupling between molecules and nanoparticles. Using the sum-over-state formalism of DIM/QM, we show that two-state models break down when the plasmon excitation is detuned from the molecular excitations. To gain further insight, we compare the simple coupled-dipole model (CDM) with the DIM/QM model. We find that CDM works well for simple systems but fails when going beyond the single molecule or single nanoparticle cases. We also find that the coupling depends strongly on the site of the nanoparticle in which the chromophore couples to. Our work suggests the importance of explicitly describing the cavity to capture the atomistic level local field environment in which the molecule strongly couples to.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.