Abstract

The BL Lac object 3C 66A was the target of an intensive multiwavelength monitoring campaign organized in 2003–2004. During the campaign, its spectral energy distribution (SED) was measured and flux measurements from radio to X-ray frequencies as well as upper limits in the very high energy (VHE) γ-ray regime were obtained. Here, we reproduce the SED and optical spectral variability pattern observed during our multiwavelength campaign using a time-dependent leptonic jet model. Our model could successfully simulate the observed SED and optical light curves and predict an intrinsic cutoff value for the VHE γ-ray emission at ~4 GeV implying the effect of the optical depth due to the intergalactic infrared background radiation (IIBR) to be negligible. Also, the contribution of external Comptonization (EIC), due to the presence of a broad-line region (BLR), in the emission of γ-ray photons could be significant early-on when the emission region is very close to the central engine but as it travels farther out, the production mechanism of hard X-ray and γ-ray photons becomes dominated by synchrotron self-Compton mechanism (SSC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.