Abstract
Introduction: Sediment bypass tunnels (SBTs) are operated during floods to re-establish sediment continuity past dams with the ultimate goal of decreasing accumulation in reservoirs. Depending on the location of the intake structure and operational conditions, SBTs may release either bed load-laden or bed load-free flows in the form of sudden floods (pulses). When evaluating the impacts of SBTs, the traditional approach has been to monitor channel changes in the years following project completion. However, by the time these impacts become evident, mitigation is challenging.Methods: This research adopts a forward-thinking methodology, emphasizing the prediction of potential impacts during the project’s early planning stages. We use a one-dimensional morphodynamic model to forecast the potential morphological response of a gravel-bed river with an idealized geometry to a series of SBT operations characteristic of projects in the Swiss Alps.Results: The morphological response of the downstream reach over the medium to long term is influenced by the alternating pattern of bed load-laden and bed load-free flow releases. This pattern is instrumental in forming a transition region near the SBT outlet hydrograph boundary layer (HBL).Discussion: Within the (HBL), fluctuations in bed elevation and slope are localized, while variations in grain-size distribution persist throughout the downstream region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.