Abstract

The dipyrrolyldiphenylethene (DPYDPE) molecule shows a switching between aggregation-induced-emission (AIE) and crystallization-induced emission (CIE) upon modification of the stereochemistry of the molecule. Herein, we propose a theoretical study based on molecular dynamics, time-dependent (TD-) density functional theory (DFT), and QM/QM′ calculations to investigate the structural and optical properties of the E and Z isomers in three different phases (solution, crystal, and aggregate). By computing the Huang–Rhys factors and the reorganization energies, we demonstrate that the fluorescence quenching observed in solution for both isomers is due to a nonradiative decay process involving low-frequency vibrational modes assigned to scissoring motions. In the crystal and in the aggregates, the effects of steric hindrance strongly modify the topology of the potential energy surface of the first excited state, and this results in a restriction of the vibrational modes involved in the energy dissipation. The mo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call