Abstract

Low-density foams have to possess a sufficient resistance to cracking in order to ensure the mechanical integrity of foam materials in service, even when not intended for load-bearing applications. In this study, mode I fracture toughness in the foam rise direction has been experimentally characterized for anisotropic rigid commercial polyurethane foams as well as for polyisocyanurate foams produced using polyols derived from rapeseed oil and filled with a montmorillonite nanoclay. Rectangular parallelepiped unit-cell based scaling relations expressing foam toughness via its relative density, cell dimensions, geometrical anisotropy, and the ultimate tensile stress of the base polymer have been employed for prediction of foam toughness. Assuming a brittle fracture of foam struts, a conservative estimate of toughness is obtained. It is demonstrated that considering the yielding of foam struts at the crack front as the criterion of crack extension provides a closer estimate of foam toughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call