Abstract

The archaeon Halobacterium salinarum can grow phototrophically with only light as its energy source. It uses the retinal containing and light-driven proton pump bacteriorhodopsin to enhance the membrane potential which drives the ATP synthase. Therefore, a model of the membrane potential generation of bacteriorhodopsin is of central importance to the development of a mathematical model of the bioenergetics of H. salinarum. To measure the current produced by bacteriorhodopsin at different light intensities and clamped voltages, we expressed the gene in Xenopus laevis oocytes. We present current–voltage measurements and a mathematical model of the current–voltage relationship of bacteriorhodopsin and its generation of the membrane potential. The model consists of three intermediate states, the BR, L, and M states, and comparisons between model predictions and experimental data show that the L to M reaction must be inhibited by the membrane potential. The model is not able to fit the current–voltage measurements when only the M to BR phase is membrane potential dependent, while it is able to do so when either only the L to M reaction or both reactions (L to M and M to BR) are membrane potential dependent. We also show that a decay term is necessary for modeling the rate of change of the membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.