Abstract

This paper studies the combined task of determining a favorable machine configuration and line balancing (MCLB) for an assembly line where a single type of printed circuit board is assembled by a set of interconnected, reconfigurable machine modules. The MCLB problem has been solved previously by heuristic methods. In the present work, we give a mathematical formulation for it and transform the model into a linear integer programming model that can be solved using a standard solver for problems of moderate size. The model determines the best machine configuration and allocation of components to the machine modules with the objective of minimizing the cycle time. Because the solutions found in this way are globally optimal, they can be used to evaluate the efficiency of previous heuristics designed for the MCLB problem. In our experiments, an evolutionary algorithm gave near optimal results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.