Abstract

A split-step wavelet method for simulating the long-range wave propagation is introduced. It is based on the fast wavelet transform. Compared to the split-step Fourier method, this method improves the computation efficiency while keeping a good accuracy. The propagation is performed iteratively by means of a pre-computed matrix containing the individual propagations of the wavelets. A fast computation method of this matrix is also presented. For the radiowave propagation in the low troposphere, a local image method is proposed to account for an impedance ground. Inhomogeneous atmospheres and irregular grounds are also considered. Finally, numerical tests of long-range propagations are performed to show the accuracy and time efficiency of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call