Abstract

This article presents the results of the development of a mathematical model for predicting the levelized cost of energy (LCOE) for solar concentrating thermal power systems (CSP systems) based on a nonlinear autoregressive neural network with exogenous inputs (NARX). A two-layer NARX network with sigmoid hidden neurons and linear output neurons has been developed. The input layer is made up of the following variables: the volume of input power of CSP systems in the world, the total world energy consumption, domestic energy consumption, domestic gas consumption, domestic consumption of coal and lignite, domestic energy consumption, the share of renewable energy in electricity generation, the share of wind and solar energy in the production of electricity, carbon dioxide emissions from fuel combustion, the price of Brent oil against the US dollar, and the average price for natural gas auctions. The output layer specifies LCOE values for CSP systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call