Abstract

Modeling a biological process equips us with more comprehensive insight into the process and a more advantageous experimental design. Non-homologous end joining (NHEJ) is a major double-strand break (DSB) repair pathway that occurs throughout the cell cycle. The objective of the current work is to model the fast and slow phases of NHEJ in G1 phase of the cell cycle following exposure to ionizing radiation (IR). The fast phase contains the major components of NHEJ; Ku70/80 complex, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and XLF/XRCC4/ligase IV complex (XXL). The slow phase in G1 phase of the cell cycle is associated with more complex lesions and involves ATM and Artemis proteins in addition to the major components. Parameters are mainly obtained from experimental data. The model is successful in predicting the kinetics of DSB foci in 13 normal, ATM-deficient, and Artemis-deficient mammalian fibroblast cell lines in G1 phase of the cell cycle after exposure to low doses of IR. The involvement of ATM provides the model with the potency to be connected to different signaling pathways. Ku70/80 concentration and DNA-binding rate as well as XXL concentration and enzymatic activity are introduced as the best targets for affecting NHEJ DSB repair process. On the basis of the current model, decreasing concentration and DNA binding rate of DNA-PKcs is more effective than inhibiting its activity towards the Artemis protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.