Abstract

The Cauchy problems of the propagation of a single wave and the interaction of two solitary waves of different amplitude are solved numerically for the case of slow symmetric surface waves in a magnetic tube. It is found that the solitary waves interact in the same way as the solitons of the known soliton equations such as the Korteweg-de Vries and Benjamin-Ono equations, i.e., preserve their shape after interacting. The way in which the solitons decrease at infinity is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.