Abstract
The outbreak of viral infectious diseases urges airborne droplet and surface disinfection strategies, which may rely on photocatalytic semiconductors. A lipid bilayer membrane generally encloses coronaviruses and promotes the anchoring on the semiconductor surface, where, upon photon absorption, electron-hole pairs are produced, which can react with adsorbed oxygen-containing species and lead to the formation of reactive oxygen species (ROSs). The photogenerated ROSs may support the disruptive oxidation of the lipidic membrane and pathogen death. Density functional theory calculations are employed to investigate adsorption modes, energetics, and electronic structure of a reference phospholipid on anatase TiO2 nanoparticles. The phospholipid covalently bound on TiO2, engaging a stronger adsorption on the (101) than on the (001) surface. The energetically most stable structure involves the formation of four covalent bonds through phosphate and carbonyl oxygen atoms. The adsorbates show a reduction of the band gap compared with standalone TiO2, suggesting a significant interfacial coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.